Fusing Biomedical Multi-modal Data for Exploratory Data Analysis

نویسندگان

  • Christian W. Martin
  • Harmen grosse Deters
  • Tim W. Nattkemper
چکیده

Data analysis in modern biomedical research has to integrate data from different sources, like microarray, clinical and categorical data, so called multi-modal data. The reef SOM, a metaphoric display, is applied and further improved such that it allows the simultaneous display of biomedical multi-modal data for an exploratory analysis. Visualizations of microarray, clinical, and category data are combined in one informative and entertaining image. The U-matrix of the SOM trained on microarray data is visualized as an underwater sea bed using color and texture. The clinical data and category data are integrated in the form of fish shaped glyphs. The resulting images are intuitive, entertaining and can easily be interpreted by the biomedical collaborator, since specific knowledge about the SOM algorithm is not required. Visual inspection enables the detection of interesting structural patterns in the multi-modal data when browsing through and zooming into the image. Results of such an analysis are presented for the van’t Veer data set. keywords: data mining, exploratory data analysis, semantic data integration, information visualization, self organizing maps, neural networks, multi-modal data, complex data

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medical Image Segmentation Based on Multi-Modal Convolutional Neural Network: Study on Image Fusion Schemes

Image analysis using more than one modality (i.e. multi-modal) has been increasingly applied in the field of biomedical imaging. One of the challenges in performing the multimodal analysis is that there exist multiple schemes for fusing the information from different modalities, where such schemes are application-dependent and lack a unified framework to guide their designs. In this work we fir...

متن کامل

PERFORMANCE-BASED SEISMIC DESIGN OPTIMIZATION FOR MULI-COLUMN RC BRIDGE PIERS, CONSIDERING QUASI-ISOLATION

In this paper an optimization framework is presented for automated performance-based seismic design of bridges consisting of multi-column RC pier substructures. The beneficial effects of fusing components on seismic performance of the quasi-isolated system is duly addressed in analysis and design. The proposed method is based on a two-step structural analysis consisting of a linear modal dynami...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

Multi-modal audio-visual event recognition for football analysis

The recognition of events within multi-modal data is a challenging problem. In this paper we focus on the recognition of events by using both audio and video data. We investigate the use of data fusion techniques in order to recognise these sequences within the framework of Hidden Markov Models (HMM) used to model audio and video data sequences. Specifically we look at the recognition of play a...

متن کامل

Studies of Biometric Fusion NISTIR 7346; Appendix B: Effectiveness of Score-Level Fusion

This three-part appendix contains the results of experiments measuring the effectiveness of different categories of fusion: multi-modal (finger and face), multi-instance (multiple finger positions), multi-matcher, and multi-sample (multiple enrollments). Appendix B.1: Score-Level Fusion of Face and Multiple Fingerprints This is an analysis of the effectiveness of multi-modal (finger and face) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006